The Kinematic Effects of Common Peroneal Functional Electrical Stimulation (FES) in Chronic Stroke (CVA) and Multiple Sclerosis (MS) using a 3-D Model of the Shoe

Dr. Jill van der Meulen (PhD), Lead Clinical Scientist
Emma Pratt, Clinical Scientist
Mark Reeves, Clinical Scientist
Alison Clarke, Gait Lab Manager and Clinical Specialist Physiotherapist
Clinical Engineering Department (STH)
Gait Lab, M+SRC, Specialised Rehabilitation (STH)
Functional Electrical Stimulation (FES)

- There is a large FES Clinic (over 500 patients) at the Northern General Hospital Gait Laboratory.
- FES is commonly used in the UK to treat drop foot by stimulating the common peroneal nerve to correct excessive plantarflexion during swing.
- FES is also commonly prescribed to improve stability at initial contact and/or forefoot clearance in swing, in the presence of excessive inversion.
- FES has been shown to improve walking speed although there has been little published that show direct 3-d kinematic improvements with FES.
Functional Electrical Stimulation (FES)

Without FES: With FES:

• VIDEOS NOT AVAILABLE
Direct and Indirect effects of FES

Direct Effects of FES:
• Increased DF in swing
• Increased eversion (correction of excessive inversion)

Indirect effects of FES:
• Increased Speed
• Reduced fatigue when walking
• Reduced tripping and falling
• Increased Confidence
• Less associated reactions
Common clinical outcome measurements in FES clinics include:

- Speed (light gates, stopwatch)
- average step length (steps between 2 markers)
- Physiological Cost Index (PCI)
- DF/PF from PiG

These measurements excellent clinical OMs BUT they do not always “tell the full story”…
The problem with Speed – no FES
Functional Electrical Stimulation (FES)

With FES:

• VIDEOS NOT AVAILABLE
The problem with Speed – FES on
The problem with Speed

FES was successful - Why?

• He felt his walking was easier. (indirect)
• He felt safer, more confident that his foot wouldn’t “tip” over during stance (indirect)
• Correction of excessive inversion during swing. (direct)

BUT the speed was the same with the FES on vs off.
The problem with Speed

Gait kinematics can be improved without a change/improvement in speed.

As you get faster you approach a normal range.

- A 10% increase in speed for someone who walks 0.9 m/s (close to the normal range) is different than a 10% increase in speed in someone who walks 0.08 m/s. The slower person has the most scope to improve.
Problems with other OMs

Energy Expenditure Measures (PCI, THBI, Borg):

• Quantifiable measurements (PCI, etc) need a “steady state”. Can you be confident that you’ve eliminated order effects with someone who suffers from fatigue.

• Subjective measurements (Borg) rely on patients understanding of the question.
Problems with DF/PF 3-d gait analysis

Standard 3-D clinical gait analysis models (i.e. PiG) the foot as a vector and consequently:

- Can get a measurement of DF/PF and foot progression (and foot rotation compared to knee axis)
- No measurement of inversion/eversion.
- More complex foot models (Oxford Foot Model) that measure in/eversion require the patients to be barefoot.
- CGA takes a long time – often unsuitable to do clinically.
Shoe Model (Emma Pratt)

- Develop a simple model (2 extra markers on medial aspect of 1st met. head and lateral aspect of 5th met head)
- Attempt to validate.
Shoe Model validation

- Preliminary Validation – Used 11 Normal subjects (22 feet), barefoot with OFM 3D barefoot model (Stebbins et al, 2006)
- Used virtual distal 1st met head marker, 5th met head marker to represent shoe model.
- Good correlation of shoe model inversion and eversion compared to validated OFM.

![Graphs showing DF/PF and Inv/Eve comparison between Shoe Model and OFM validation.](image-url)
To look at the Direct kinematic effects of FES we borrowed full 3-d data (including shoe model) from another study (ShefStim):

- Cohort of existing unilateral FES users at STH (n=20, n=9 CVA, n=11 MS).
- Patient-selected footwear.
- Self-selected normal speed.
- 8 Vicon MXF40 cameras (Vicon Ltd, Oxford UK) capturing at 100Hz.
- Electrode sites and the pulse width were selected by the patient to reflect their usual response.
- Two representative traverses were completed with both FES on and off (randomised order).
Materials and Methods

Direct kinematic Outcome Measures:

- DF/PF at initial contact.
- maximum DF in swing.
- inversion/eversion at initial contact.
- inversion/eversion in mid-swing.

For both MS and CVA groups, the non-parametric Wilcoxon test (level of significance $p \leq 0.05$) was calculated to investigate the null hypotheses of no difference with or without stimulation.
Results – walking speed

Median speed (25th-75th percentile) was calculated from 3D data:

- **MS (n=11)**
 - = 0.60m/s (0.37-0.96) without FES
 - = 0.63m/s (0.52-1.10) with FES

- **CVA (n=9)**
 - = 0.70m/s (0.41-0.80) without FES
 - = 0.74m/s (0.63-0.90) with FES.
Results – Shoe Model

MS group (solid trace with FES, dashed trace without FES)

CVA group (solid trace with FES, dashed trace without FES)
Results – Shoe Model

- 3-D kinematics with FES applied:
 - increased dorsiflexion during swing.
 - reduced inversion during swing.
 - Improved ground clearance.
 - Improved pre-positioning of the foot at initial contact.
- Improvements in the coronal plane were only statistically significant for MS patients, perhaps due to the variable and often increased tone seen in the CVA population.
- The ‘shoe model’ was helpful when performing 3d gait analysis of patients with footwear donned.
- Paper submitted to Gait and Posture.
Conclusions

- People improve in different ways with FES (ie faster, improved kinematics, less effortful walking)
- Difficult to find outcome measures which characterise the effects of FES with a non-homogeneous group.
- Indirect outcome measures are appropriate in a clinical context and are secondary to the direct effects.
We would like to thank

• Sheffield Hospitals Charitable trust for funding the ShefStim project.

• Co-authors, particularly Emma Pratt for developing the shoe model

• Gait Laboratory at the Northern General Hospital where we collected the data

• Patient of the Sheffield FES service who volunteered

• Gait Laboratory at the Sheffield Children’s Hospital for the OFM normal data.

• To all of you, for listening.